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CONTEXT Basic science teaching in under-
graduate medical education faces several chal-
lenges. One prominent discussion is focused
on the relevance of biomedical knowledge to
the development and integration of clinical
knowledge. Although the value of basic sci-
ence knowledge is generally emphasised, theo-
retical positions on the relative role of this
knowledge and the optimal approach to its
instruction differ. The present paper addresses
whether and to what extent biomedical knowl-
edge is related to the development of clinical
knowledge.

METHODS We analysed repeated-measures
data for performances on basic science and
clinical knowledge assessments. A sample of
598 medical students on a traditional curricu-
lum participated in the study. The entire study
covered a developmental phase of 2 years of
medical education. Structural equation model-
ling was used to analyse the temporal relation-
ship between biomedical knowledge and the
acquisition of clinical knowledge.

RESULTS At the point at which formal basic
science education ends and clinical training

begins, students show the highest levels of bio-
medical knowledge. The present data suggest
a decline in basic science knowledge that is
complemented by a growth in clinical knowl-
edge. Statistical comparison of several struc-
tural equation models revealed that the model
to best explain the data specified unidirec-
tional relationships between earlier states of
biomedical knowledge and subsequent
changes in clinical knowledge. However, the
parameter estimates indicate that this associa-
tion is negative.

DISCUSSION Our analysis suggests a negative
relationship between earlier levels of basic sci-
ence knowledge and subsequent gains in clini-
cal knowledge. We discuss the limitations of
the present study, such as the educational con-
text in which it was conducted and its non-
experimental nature. Although the present
results do not necessarily contradict the rele-
vance of basic sciences, we speculate on mech-
anisms that might be related to our findings.
We conclude that our results hint at possibly
critical issues in basic science education that
have been rarely addressed thus far.
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INTRODUCTION

Abraham Flexner’s report on medical education in
the USA and Canada,1 published more than
100 years ago, had an indisputable influence on the
way medical curricula were conceived. Flexner
described how the biomedical sciences – or what he
referred to as ‘the laboratory branches’ of medical
education1 – were separated from the practical, clin-
ical aspects. He emphasised the fundamental and
integral role of the biomedical sciences and argued
that the division was made ‘for purposes of conve-
nience […] as the work is carried on mainly in labo-
ratories or mainly in the hospital’.1 In other words,
according to Flexner, ‘…the distinction is only
superficial’.1 Flexner argued that basic sciences and
clinical practice are tightly connected, that teaching
must be conducted with the critical method of sci-
ence in mind, and that ‘undergraduate instruction
[should] be throughout explicitly conscious of its
professional end and aim’.1 He saw medical educa-
tion as being in ‘close association with contiguous,
contributory, or overlapping sciences’1 and as pro-
viding an interdisciplinary learning environment in
which ‘at any moment a lucky stroke may transfer a
problem from pathology to chemistry or biology’.1

Indeed, medical education has undergone pro-
nounced changes since the early 20th century. One
major development in recent decades has con-
cerned the integration of content from the neigh-
bouring fields of the behavioural or social sciences
into the medical curriculum.2,3 Overall, the medical
curriculum has widened considerably since Flexner’s
report, resulting in a truly multidisciplinary perspec-
tive on the knowledge, skills and competencies to
be acquired by future doctors.4

Needless to say, these developments have not been
smooth. The reform of medical education toward a
competence-based approach has been accompanied
by a shift away from the basic sciences.5–8 In Scot-
land, for example, the number of teaching hours
for anatomy has decreased by 50% in recent dec-
ades.9 Other authors have reported similar findings
in other regions.6,10 Indeed, it seems that the rele-
vance of detailed basic science knowledge has
increasingly been called into question in recent dec-
ades.6,7,10,11 This debate on the relevance of bio-
medical knowledge follows several related
discussions on, for example, the deficits of medical
school graduates’ basic science knowledge (for a
review, see Bergman et al.5), the role of dissection
in the undergraduate curriculum12,13 and how basic

science knowledge can be transferred to clinical
practice.14,15

At first, this challenge to the role of basic sciences
in undergraduate medical training seems to contrast
with the general belief that it is important for doc-
tors to have elaborate biomedical knowledge.7,16

However, research has found that expert doctors
rarely use biomedical knowledge in daily diagnosis.
Rather, non-analytic reasoning or pattern recogni-
tion is used to process the vast majority of routine
cases.17,18 It seems that these non-analytic strategies
may be the result of direct patient contact and clini-
cal experience, rather than the outcome of factual
knowledge of, for example, anatomy, biochemistry
and physiology.17 Against this background, why do
doctors need basic science knowledge at all?

Relating expert performance to biomedical
knowledge

Theories on the role of clinical reasoning in medi-
cal expertise address the relationships among bio-
medical knowledge, clinical knowledge and clinical
reasoning and usually highlight the importance of
basic sciences in the medical curriculum. Two of
the most influential approaches are discussed in the
following paragraphs.

According to Kaufman et al.7 and Patel et al.,19clini-
cal knowledge and biomedical concepts are stored
separately. In general, experts do not need to access
biomedical knowledge; rather, they draw on their
specific knowledge of a particular clinical presenta-
tion. However, biomedical knowledge becomes
essential when pattern recognition no longer
applies, when cases are particularly difficult or when
unexpected scenarios occur. Patel and colleagues19

assume that biomedical knowledge is characterised
by more abstract causal relations. By contrast, clini-
cal knowledge is assumed to be more ‘concrete’ or
‘observational’19 and to describe ‘how a set of symp-
toms is consistent with a diagnosis’.20 Therefore, the
approach described by Patel et al.19 and Kaufman
et al.1,7 is often referred to as the ‘two worlds
hypothesis’.

By contrast, the model proposed by Boshuizen,
Schmidt, Norman and Rikers21–24 suggests that the
development of medical expertise follows a mean-
ingful sequence of stages and that every stage
involves structural changes in the knowledge base.
In the first step, students build an elaborate base of
biomedical knowledge. This biomedical knowledge
is then increasingly subsumed under clinical
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knowledge and hence encapsulated. An extensively
connected network of biomedical and clinical
knowledge provides the basis for the development
of illness scripts. These scripts include knowledge of
enabling conditions, malfunctions and signs and
symptoms,24 which allow for the rapid processing of
clinical cases, similarly to pattern recognition.23

According to Schmidt and Rikers,24 biomedical and
clinical knowledge are integrated into a single com-
mon knowledge base. Biomedical knowledge is
assumed to be encapsulated under clinical knowl-
edge and is thus thought to be implicitly activated
in the handling of routine cases, by contrast with
the ‘two worlds’ view.19

The theories of both Patel et al.19 and Schmidt
et al.23 leave no doubt as to the relevance of basic
science content in medical education and have stim-
ulated a long tradition of research on the relation-
ships among clinical reasoning, clinical knowledge
and biomedical knowledge.21,25–32 Critically, both
conceptions have far-reaching implications for how
undergraduate medical education should be struc-
tured. Kaufman et al. emphasise the ‘special status’7

of biomedical knowledge in medical education, in
line with the traditional curriculum according to
Flexner.1 By contrast, the works of Boshuizen and
Schmidt21 imply the need for an integrated curricu-
lum in which problem-based learning (PBL) is the
central instructional approach.22

Although highly relevant to this discussion, studies
applying theories of expertise to the daily practice
of undergraduate medical education were surpris-
ingly rare in the early years of research on the role
of biomedical knowledge. Of course, various studies
have related specific instructional approaches to
cognitive benefits33 or to differences in problem-
solving styles.34 However, Woods and colleagues
were the first to systematically relate the unique
value of biomedical knowledge to learning and
instruction.35–38 In a series of papers,35–38 these
authors conceived of basic science knowledge as a
mnemonic device,16 a tool enabling students to bet-
ter learn and integrate clinical knowledge, or to
make sense of signs and symptoms. Various studies
found that the causal explanation of a disease in
the form of its underlying pathological mechanisms
represents an efficient tool that facilitates both
memorising36,39 and correct diagnosis.35 Woods
et al. concluded that biomedical knowledge plays an
indirect role in the development of a novice to an
expert: ‘[c]ausal understanding leads to more
coherent understanding of clinical conditions,
which in turn leads to expert-like behaviour.’38 This

conception of biomedical knowledge as a tool that
creates coherence in the representation of clinical
content36 is directly related to the process of encap-
sulation proposed by Schmidt and Rikers.24

What this study adds

As noted by Woods,16 most relevant research to date
has been carried out in highly controlled laboratory
settings. In addition, previous studies have generally
drawn on rather small samples and have not allowed
changes in student performances to be tracked
across intervals longer than a few days or weeks. We
are, of course, aware of the large body of research
on the development of medical knowledge on a
broader timescale, especially in the contexts of cur-
ricular comparisons40–43 or the effectiveness of
PBL.44 In this tradition, however, biomedical and
clinical knowledge have generally been treated as
independent domains. Given the implications of the
work of Schmidt and Rikers,24 among others, which
suggest that biomedical knowledge and clinical
knowledge are closely related, this approach is ques-
tionable.

The purpose of the present study was therefore to
model the temporal interaction between biomedical
knowledge and changes in the development of clini-
cal knowledge. To this end, we applied structural
equation modelling (SEM) techniques to longitudi-
nal progress test data. In accordance with the con-
ception of basic science knowledge as a mnemonic
device, we hypothesised that higher levels of bio-
medical knowledge at the beginning of the clinical
phase are associated with higher gains in clinical
knowledge in the subsequent academic year.

METHODS

Participants

Data for a total of 598 undergraduate medical stu-
dents participating in an educational research study
at Charit�e Medical University Berlin were included
in the analysis. In order to cover a developmental
phase of 2 years of medical education, we collected
data in an accelerated longitudinal45 or sequential
cohort46 design in three consecutive waves in,
respectively, October 2010, April 2011 and October
2011. This approach combines longitudinal and
cross-sectional data in order to cover a broad span
of development sufficiently. Although participants
provided longitudinal information on their develop-
ment, their data do not necessarily span the 2 years

ª 2013 John Wiley & Sons Ltd. MEDICAL EDUCATION 2013; 47: 1223–1235 1225
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of interest. The sampling structure is presented in
Table 1. Before test administration, students com-
pleted a short self-report questionnaire in which
they were asked to consent to the inclusion of their
data in the analyses. The procedure required the
students to generate a unique personal ID and to
transcribe a multi-digit dataset number to the ques-
tionnaire. Thus, participants’ data could no longer
be traced to individual people. This procedure was
chosen after consulting the local data protection
authorities. Students were given the option of par-
ticipating in a lottery to win audio players, digital
cameras and book tokens.

Educational context

All participants were enrolled in a traditional curric-
ulum with a typical structure of 2 years of basic sci-
ence instruction followed by 3 years of clinical
content. At the end of the second academic year,
students are required to pass an extensive national
licensing examination assessing the entire basic sci-
ence content covered in the first 2 years. From the
third year onwards, there is no further systematic
teaching of basic sciences. Progress tests are manda-
tory for traditional curriculum students from the
beginning of the third academic year (semester 5).
Sufficient data were available for the third and
fourth academic years (i.e. semesters 5–8). We
therefore restricted our analyses to this phase of
medical education.

Missing data

A total of 926 students sat the Berlin Progress Test
in Medicine (PTM) during the period of interest.
Of these, 772 (83%) participated in the study. How-
ever, data for 177 students could not be included in
the analysis mainly because of transcription errors
arising as a result of the data protection procedure
described above. These difficulties led to partially
incomplete data and we therefore employed full
information maximum likelihood47,48 estimation in
our analysis.

Measures

The Berlin PTM was used to assess the development
of undergraduates’ clinical and basic science knowl-
edge over time. Progress testing monitors the acqui-
sition of medical knowledge by testing students
repeatedly on the content they are expected to have
mastered by the end of their education. Test items
are sampled from an item pool covering the entire
undergraduate medical curriculum across medical
disciplines and functional systems. In the PTM, 200
items per test are drawn randomly from a database
containing more than 5000 items. Items that have
been administered in a test are excluded from the
sampling procedure for 2 years.

All students take the same test, regardless of their
level of training. Participants are able to choose a
‘don’t know’ option to ‘dismiss’ content they cannot
readily answer. Guessing is penalised and the total
test score is obtained by negative marking of incor-
rect answers. As the PTM is implemented as a for-
mative progress test, no pass or fail decisions are
made on the basis of the results. However, it is com-
pulsory for students to take the test twice per year.
(For further details, see Nouns and Georg49).

All items are administered in single best-answermulti-
ple-choice question format and, when possible, consist
of clinical vignettes (see Appendix S1, online). Inde-
pendent expert committees have judged each item
with regard to the appropriateness of its content and
level of formality. The number of distractors ranges
from three to amaximum of eight. Item and distractor
analysis is conducted after the administration of each
progress test. Items with extreme difficulty values or
negative discrimination and those flagged as problem-
atic by students are submitted to post review and
recoded or excluded from the analysis. The basic sci-
ence items cover anatomy (including gross anatomy,
histology and embryology), biochemistry and chemis-
try, physiology and physics. Themean � standard

Table 1 Sample structure showing cohorts, measurement
occasions and number of participants per semester of study

Cohort

Semester

5 6 7 8

1 C1T2

n = 90

C1T3

n = 88

2 C2T1

n = 150

C2T2

n = 149

C2T3

n = 126

3 C3T1

n = 96

C3T2

n = 115

C3T3

n = 100

4 C4T1

n = 96

C4T2

n = 118

C1–C4 = cohorts 1–4; T1–T3 = measurement occasions 1–3;
n = total number of students per cohort at that measure-
ment occasion
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deviation (SD) Cronbach’s alpha for the basic science
subset (n = 25 items) across each combination of test
occasion and cohort was 0.76 � 0.05. The clinical
items cover 12 clinical disciplines, including: internal
medicine; surgery; paediatrics; gynaecology; psychia-
try; ophthalmology; dermatology; emergency medi-
cine; orthopaedics; family medicine; urology, and
neurology. The mean � SD Cronbach’s alpha for the
clinical subset (n = 120 items) across each combina-
tion of test occasion and cohort was 0.89 � 0.03.
Items that did not exclusively assess clinical or basic
science content (e.g. behavioural sciences, biomet-
rics, epidemiology) were excluded from the analysis
(n = 55 items).

Both subsets were coded according to the percent-
age of correct answers and scaled to the T-metric
(mean � SD: 50 � 10) at the first point of measure-
ment (October 2010). Variables at consecutive
points of measurement were rescaled with reference
to the first measurement occasion. This rescaling
does not alter psychometric properties or statistical
comparisons, but puts the variables on a compara-
ble metric and enhances presentation.50

Statistical procedure

We used a relatively new statistical procedure, a bivari-
ate dual change score model (DCSM),50,51 in order to
analyse the developmental relationship between stu-
dents’ biomedical knowledge and clinical knowledge.
The bivariate DCSM itself relates to the technique of
cross-lagged correlation52 and to a special application
of confirmatory factor analysis to longitudinal data
(latent growth curve modelling [LGM]53). We give
details on the methodological procedure in Appen-
dix S1 and focus here on the conceptual features of
this statistical technique. We will first detail how the
development of a single variable is characterised in
a DCSM. Thereafter, we will focus on the bivariate
case, in which two changing variables are analysed.

In a DCSM, the change of one variable is primarily
characterised by the (latent) differences between
two consecutive measurement occasions (‘time
lags’). Those differences (e.g. gains or losses) are
decomposed into two components: firstly, an addi-
tive (i.e. ‘stable’ or ‘time-independent’) component,
which is similar to the conventional slope in a
regression analysis, and secondly, a multiplicative or
auto-proportional component accounts for temporal
dependencies of sequential occasions. For example,
it might be assumed that students have a certain
body of medical knowledge that grows in a steady
fashion. In this scenario, students show some stable

accumulation of medical knowledge, which could
be expressed by the finding that ‘every semester,
students are able to answer a further 20 items cor-
rectly’ (i.e. the constant, additive component). Fur-
thermore, students might not be able to fully
retrieve (or simply partially ‘forget’) what they have
learned in earlier terms. This could be designated
as a different component which accounts for an
amount of medical knowledge that was learned at
an earlier time-point and is only partially retrievable
at a later moment and would hence form the multi-
plicative or proportional component; this could be
expressed in the finding that ‘students typically for-
get half of the content they have learned within a
semester’. Of course, there is no claim that the
parameters estimated in a DCSM are ‘true’ repre-
sentations of the concrete fractions that such com-
ponents might represent. The estimated
components do not unambiguously permit conclu-
sions of the type ‘80% of the learned knowledge is
forgotten and the most is learned completely new’.
Importantly, the decomposition into two change
components permits a statistically more flexible for-
malisation of developmental patterns and the analy-
sis of correlates of the several change components.

For our analysis, however, the most worthwhile fea-
ture is the inclusion of longitudinal dependencies
or ‘couplings’ between two changing variables (i.e.
performances on biomedical and clinical knowledge
tests). Hence, we used a bivariate extension of dual
change score models. Here, gains and losses in per-
formance are modelled for each variable, as we have
described. Moreover, two coupling components are
added to the model to account for the interrelated-
ness of the two change processes. Consequently, the
performance on the biomedical items on one mea-
surement occasion is supposed to be related to
changes (e.g. gains or losses) in performance on
the subset of clinical items within the following
semester, and vice versa.

In the following text, we use more technical abbrevia-
tions that are common in the literature on DCSMs.
The additive, proportional and coupling components
are labelled with the Greek letters a, b and c, respec-
tively. The full model is given as a path diagram in
Fig. 1.

As our research question is directly related to the
coupling components between performances in
basic science (BSc) and clinical knowledge (CK), we
explicate several models that statistically formalise
different related developmental patterns. The logic
of our analysis is based on the comparison of the

ª 2013 John Wiley & Sons Ltd. MEDICAL EDUCATION 2013; 47: 1223–1235 1227
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empirical fit of different plausible models, as is com-
mon in SEM approaches. We estimated five models
and compared their relative fits to the data.

Three models were specified to explore bidirec-
tional relations between biomedical and clinical
knowledge. Firstly, model 1-a estimates two coupling
parameters between BSc and CK that are allowed to
differ in their magnitude (cBSc?ΔCK = ? and cCK?
ΔBSc = ?). [Question marks refer to the parameters
that are freely estimated in a specific model. The
c-value designates the coupling of one variable on
the later change in the other variable. Hence,
cBSc?ΔCK reads as: ‘couplings of earlier state of BSc
on subsequent change in CK’.]

A restriction of this model is the equal coupling
model 1-b. Here again, reciprocal dependencies are
assumed, but they are expected not to differ in their
magnitude (cBSc?ΔCK = cCK?ΔBSc = ?). Hence, there
is no ‘leading’ effect of one variable on change in

the other variable. The most restrictive model 1-c
assumes that there are no coupling effects (i.e. the
two variables develop independently of each other).
Hence, both coupling parameters are fixed to zero
(cBSc?ΔCK = cCK?ΔBSc = 0).

By contrast with these bidirectional models, unidi-
rectional models specify the hypothesis that states in
one variable precede changes in the other. Model
1-d specifies unidirectional couplings from basic sci-
ence knowledge to changes in clinical knowledge
(cBSc?ΔCK = ?; cCK?ΔBSc = 0). Conversely, model
1-e specifies unidirectional couplings from clinical
knowledge to changes in biomedical knowledge
(cBSc?ΔCK = 0; cCK?ΔBSc = ?).

Models 1-a to 1-e were analysed using Mplus 6.1.54

Model fit to the data was determined by the root
mean square error of approximation (RMSEA), the
Tucker–Lewis index (TLI) and the comparative fit
index (CFI). The RMSEA compares the model-

Figure 1 Graphical representation of the bivariate dual change score model for two variables X and Y (50, 51); Triangles
indicate constants (i.e., means and intercepts). Observed (manifest) variables are represented by squares. All unlabelled
paths–except for the covariances–are fixed to 1. Latent variables are indicated by circles. Regression weights are represented
by one-headed arrows; variance and covariances, by two-headed arrows.
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implied covariances with those observed in the
sample. Larger RMSEA values indicate a larger
discrepancy between the specified model and the
data. Values of � 0.06 are considered good; values
of < 0.10 may still be considered acceptable.55,56

Both the TLI and the CFI test the specified model
against a ‘null model’ or ‘independence model’,
which basically assumes the observed variables to be
uncorrelated. In general, values close to 0.95 or
higher are considered acceptable.55,56 In-depth dis-
cussions of fit indices are available in, for instance,
Kline55 and Hu and Bentler.56 Models were com-
pared directly based on the statistical significance of
differences in chi-squared values (Δv²) and the cor-
responding change in degrees of freedom (Δd.f.).

RESULTS

Descriptives

Descriptive statistics for the observed variables across
the covered educational phase are given in Table 2.
In general, the data show a decline in the amount
of retrieved basic science knowledge and a steady
growth in clinical knowledge.

Dual change score model

Measures of model fit are given in Table 3. Tests of
chi-squared differences among the models (Table 3,
Δv²) indicated that the full coupling model and the
unidirectional model with couplings from BSc to
ΔCK fitted the data equally well. All other models
showed a statistically significant loss in fit relative to

the full coupling model. We therefore consider the
full coupling (1-a) and the unidirectional BSc?ΔCK
(1-d) models to provide the best explanation for
our data.

Parameter estimates for the full coupling and the
unidirectional BSc?ΔCK model are given in
Table 4. The main difference is that the coupling
parameter from CK on ΔBSc is fixed to zero in the
unidirectional BSc?ΔCK model (1-d), but estimated
in the full coupling model. Although this parameter
is statistically significant in the full coupling model,

Table 2 Descriptive statistics for total scores for clinical
knowledge (CK) and basic science (BSc) knowledge

Domain Semester

Score

(T-scaled),

mean � SD

Correct, %,

mean � SD

CK 5 50.00 � 10.00 20.02 � 8.33

6 68.70 � 12.62 27.51 � 10.52

7 91.34 � 14.42 36.58 � 12.01

8 104.90 � 15.78 42.01 � 13.15

BSc 5 50.00 � 10.00 65.30 � 15.52

6 39.25 � 12.00 51.26 � 18.63

7 37.45 � 11.83 48.90 � 18.36

8 34.51 � 12.17 45.07 � 18.89

T-scaled scores are scaled to a T-metric with a mean = 50
and SD = 10 at the first measurement occasion (semester 5)
SD = standard deviation

Table 3 Comparisons of goodness of fit for models 1-a to 1-e

Model

Goodness of fit

v² d.f. RMSEA (90% CI) CFI TLI Δv² (Δd.f.)

1-a Full coupling 48.60 19 0.051 (0.034–0.069) 0.97 0.96 –

1-b Equal coupling 66.98 20 0.063 (0.046–0.080) 0.95 0.94 18.38 (1)*

1-c No coupling 67.13 21 0.061 (0.045–0.077) 0.95 0.94 18.53 (2)*

1-d Unidirectional BSc?ΔCK 52.02 20 0.052 (0.035–0.069) 0.97 0.96 3.42 (1) (p = 0.064)

1-e Unidirectional CK?ΔBSc 67.00 20 0.063 (0.047–0.080) 0.95 0.94 18.40 (1)*

* p < 0.001 indicates significant loss in fit relative to the full coupling model
RMSEA = root mean square error of approximation; 90% CI = 90% confidence interval; CFI = comparative fit index; TLI = Tucker–Lewis
index; BSc = basic science; CK = clinical knowledge
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it is relatively small (cCK?ΔBSc, � 0.08; p < 0.05). As
indicated by the non-significant loss of model fit,
the coupling from CK on ΔBSc (cCK?ΔBSc) can be
omitted without losing substantial information. It is
important to note that fixing a small parameter
(� 0.08) causes relatively large shifts in the other
parameters estimated. For example, the coupling
effect cBSc?ΔCK decreases from � 1.07 in the full
coupling model to � 0.87 in the unidirectional
BSc?ΔCK model. Indeed, this shift is accompanied
by smaller slopes in both BSc and CK. Hence, the
different components (additive, auto-proportion,
coupling) retain their relative importance and the
implied means for the consecutive measurement
moments do not differ drastically. (For details on
the calculation, please refer to Appendix S1.)

Our results can be described as follows: given the
full coupling model, which takes influences of
clinical knowledge on the retention of basic sci-

ence knowledge into account, there is a relatively
large negative effect of basic science knowledge
on gains in clinical knowledge (cBSc?ΔCK = � 1.07).
This effect is counterbalanced by both an auto-
proportional component (1 + bCK = 1 � 0.41 =
0.59; see Equation 1 in Appendix S1) and con-
stant gains in clinical knowledge (μCK(S) = 92.43).
By contrast, the couplings from CK to ΔBSc are
marginal but also negative, indicating that stu-
dents who perform better on clinical content
items tend to have weaker retention of basic
science knowledge.

Figure 2 illustrates various combinations of high or
low initial achievements in the two domains and
relationships to subsequent development. Here,
lower initial average achievement in basic science
knowledge is associated with higher gains in clinical
knowledge (Fig. 2a, c). By contrast, higher initial
average achievement in basic science knowledge is

Table 4 Parameter estimates for the full coupling and unidirectional BSc?ΔCK models

Parameter

Model

1-a full coupling

(SE)

1-d unidirectional

BSc?ΔCK (SE)

Regression coefficients

Auto-proportion BSc (bBSc) � 0.97 (0.11)‡ � 0.76 (0.06)‡

Auto-proportion CK (bCK) � 0.41 (0.07)‡ � 0.35 (0.07)‡

Coupling BSc?ΔCK (cBSc?ΔCK) � 1.07 (0.23)‡ � 0.87 (0.23)‡

Coupling CK?ΔBSc (cCK?ΔBSc) � 0.08 (0.04)* 0 (�/�)

Means

BSc intercept (lBSc(0)) 49.55 (0.63)‡ 49.41 (0.61)‡

BSc slope (lBSc(S)) 41.35 (6.99)‡ 27.30 (2.40)‡

CK intercept (lCK(0)) 48.85 (0.61)‡ 48.71 (0.61)‡

CK slope (lCK(S))) 92.43 (14.38)‡ 80.01 (14.38)‡

Variances

BSc intercept (r2
BScð0Þ) 52.46 (11.70)‡ 45.76 (12.02)‡

BSc slope (r2BScðSÞ) 80.72 (22.47)‡ 44.66 (8.21)‡

BSc residual (r2
BScðeÞ) 62.01 (4.14)† 62.92 (4.26)‡

CK intercept (r2CKð0Þ) 26.59 (10.51)* 26.07 (10.40)*

CK slope (r2
CKðSÞ) 212.2 (73.60)† 153.31 (61.77)*

CK residual (r2
CKðeÞ) 73.48 (5.81)† 73.83 (5.76)‡

*p < 0.05; †p < 0.01; ‡p < 0.001 (two-tailed)
BSc = basic science; CK = clinical knowledge; SE = standard error
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associated with lower gains in clinical knowledge
(Fig. 2b, d).

DISCUSSION

Using the work of Boshuizen, Schmidt, Norman and
Rikers21–24 and Woods et al. 35–38 as our starting
platform, we hypothesised that biomedical knowl-
edge functions as a critical variable for the construc-
tion of a coherent base of clinical knowledge.
However, our findings did not confirm this hypothe-
sis; rather, they contradicted it, indicating that bio-
medical knowledge seems to be negatively related to
the acquisition of clinical knowledge. Given this
unexpected effect, our findings warrant careful dis-
cussion.

It is possible that individual differences in motiva-
tional or cognitive characteristics function as an
unobserved ‘cause’ and thus explain our results.

Students may vary in the degree of effort they put
into acquiring knowledge in different domains,
depending on their personal interests and the pro-
fessions they aspire to enter. In this case, our results
may simply reflect personal preferences. Likewise,
cognitive characteristics such as learning strategies
or behaviours may be differentially useful at differ-
ent stages of medical education. As has been noted
elsewhere, the amount of knowledge to be learned
in pre-clinical courses, in particular, may force medi-
cal students to revert to rote learning and memori-
sation.57,58 Although the ability to memorise
extensive amounts of factual knowledge may be an
important factor in high-stakes assessments, such as
national licensing examinations, it may be a far less
efficient strategy for the acquisition of clinical
knowledge, in which cases are processed not in
isolation, but in a more holistic manner.28

Another interpretation of our results may be that stu-
dents with less biomedical knowledge have fewer

(a) (b)

(c) (d)

Figure 2 Combinations of high and low achievement in biomedical knowledge (dotted line) and clinical knowledge
(unbroken line) in progress tests in 598 undergraduate medical students and relationships with subsequent development.
The unbroken horizontal line represents the average T-scaled score of 50 at semester 5. Higher/lower initial achievement is
characterised by plus/minus one standard deviation which is scaled to SD = 10 at semester 5.
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problems constructing a coherent base of clinical
knowledge. Similar processes of interference (i.e.
‘performance decrements caused by irrelevant infor-
mation’59) are well-known phenomena in the learn-
ing sciences (for a review, see Dempster and
Corkill59). One explanation may be that the acquired
biomedical knowledge induces a proactive interfer-
ence effect in the form of ‘a general disruptive effect
of prior learning on the ability to retrieve more
recently learned information’.60 Such an effect sug-
gests a negative influence on the processing of infor-
mation stored in long-term memory.61,62 In other
words, it is possible that students with more elaborate
biomedical knowledge have difficulties encoding and
retrieving clinical content.

Another form of problematic interaction may be
related to inappropriate transfer. Specifically, stu-
dents may try to apply their basic science knowledge
to create a coherent representation of clinical cases.
However, this transfer of knowledge may be ambigu-
ous as the similarities and differences between under-
lying pathophysiological mechanisms and the signs
and symptoms of clinical presentations remain rather
inconclusive. Similar findings have been reported in
the literature on analogous transfer,63 in which even
the successful identification of correct correspon-
dences does not necessarily lead to appropriate
transfer.64

Limitations and strengths

Critically, our study was conducted in a specific edu-
cational context. All students were following a tradi-
tional curriculum based almost entirely on classic
course structures such as lectures and seminars, and
teaching in the pre-clinical years was conducted
exclusively in a massed teaching approach. This
approach is likely to have a considerable influence on
the patterns of acquisition of medical knowledge.

Furthermore, we used a relatively specific form of
knowledge assessment. Although progress test data
have been used previously in related research scenar-
ios,44,65–67 they are summaries of responses to multi-
ple-choice items and thus reflect only a relatively
specific form of assessment of medical knowledge.

A common problem in longitudinal research is the
analysis of incomplete data. This issue is relevant to
the current study. However, the participation rates
seem to be acceptable and the absence of data mainly
reflected ‘technical’ issues, as described in the Meth-
ods section. We therefore argue that it is plausible to
assume that these missing values are ‘missing at ran-

dom’.68 In this scenario, full information maximum
likelihood estimation is known to perform well and
to be superior to other techniques for dealing with
the consequences of missing data.69,70

Finally, as a result of the non-experimental nature
of our study, it is important to note that the
observed effect may be mediated by other, unob-
served factors beyond those discussed above. Conse-
quently, the interrelationship between students’
biomedical and clinical knowledge cannot be inter-
preted as causal, but strictly correlational.

Despite these limitations the analysis presented here
may still offer a ‘glimpse at the directional dynamics
within the considered system of variables’.71 Our
study complements previous laboratory research to
give a developmental perspective using an SEM-
based approach. To the best of our knowledge, this
material represents the first analysis of longitudinal
data on the temporal interaction between students’
states of biomedical knowledge and subsequent
changes in performance on clinical knowledge tests.
In addition, we covered a time span of 2 years of
medical education.

CONCLUSIONS

Our findings suggest that the worst case scenario in
pre-clinical medical education and the teaching of
basic sciences may involve not just the perceived
inappropriateness – a ‘null effect’ – of detailed bio-
medical knowledge, but a negative relationship, at
least under the specific conditions presented here.
However, our results do not necessarily contradict
the conception of the basic sciences as a mnemonic
device, as outlined by Woods.16 By contrast, the neg-
ative relationship between the two domains
observed in our study underpins the need for
research on how to transfer the work of Woods and
colleagues35–38 to the daily practice of pre-clinical
medical education. However, our findings hint at
possible difficulties that have been largely neglected
thus far.

As we mentioned in the Introduction, the theories
on clinical reasoning and medical expertise pro-
posed by Boshuizen, Schmidt, Norman and Ri-
kers,21–24 on the one hand, and Patel et al. 19 and
Kaufman et al.,7 on the other, imply different refer-
ence standards for the structure of undergraduate
medical education. Consequently, we would cer-
tainly expect differences between integrated and tra-
ditional curricula in terms of interrelations between

1232 ª 2013 John Wiley & Sons Ltd. MEDICAL EDUCATION 2013; 47: 1223–1235
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biomedical and clinical knowledge in the develop-
ment of medical knowledge. In our study, we analy-
sed data from a traditional curriculum, in which the
two domains of knowledge are addressed sequen-
tially and separately. According to Boshuizen and
Schmidt, the process of encapsulation can be facili-
tated by an integrated teaching approach, in which
both biomedical knowledge and clinical knowledge
are addressed in parallel or simultaneously.22

Against this background, we would expect that
applying the methodology used in the present analy-
sis to other contexts using data from curricular com-
parisons41,44,67 or spanning a broader phase of
medical education might yield further insights into
the developmental relationship between biomedical
and clinical knowledge.
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